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We review on the effects of the feed mode on pattern selection observed in
chemical systems operated in open spatial reactors. In two-side-fed reactors,
strong parameter ramps naturally confine patterns in a stratum. The reactor
thickness acts both as a genuine bifurcation parameter and on the pattern
dimensionality. Depending on that thickness, standard 2D hexagon and stripe
Turing patterns or more complex 3D planforms are observed. In thin one-side-
fed reactors, patterning process must escape the imposed fixed boundary condi-
tions either by devices introducing mixed boundary conditions or by an intrinsic
phenomenon dubbed “spatial bistability.” We show that in most cases, for a
comprehensive understanding of experimental observations, the full 3D aspects
have to be taken into account.

KEY WORDS: Reaction—diffusion; chemical pattern; Turing structure; non-
linear dynamics; boundary conditions.

1. INTRODUCTION

The formation of nonequilibrium stationary reaction—diffusion patterns has
been first predicted by Turing® in 1952. Their theoretical study has been
boosted by the Brussels group, in particular by G. Nicolis who played a
major role in the introduction of the bifurcation theory in the field.®>3
Nevertheless, their first experimental evidence occurred in 1990.%
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Since their discovery, Turing structures have been extensively studied
for nearly ten years. Most of the encountered experimental features can
be explained in terms of selection between patterns of various symmetries, ®®
or of patterns resulting from front interactions and instabilities.® 19
However, the quantitative analytical description of the actual experimental
results still lags behind because of the presence of space dependent ramps
of parameters. Indeed, to obtain the true asymptotic states, the reactors
must be fed continuously. This is achieved by diffusing the chemical species
from the boundaries in a gel-reactor in order to avoid perturbations
through hydrodynamic flows. The resulting concentration profiles (ramps)
orthogonal to the feed surfaces are usually strong and make it difficult, in
general, to avoid three-dimensional aspects. Moreover, experiments seem
to show that the presence of steep ramps favors the stacking of two-dimen-
sional patterns!?) rather than genuine three-dimensional structures. Theory
has, for the most part, considered ideally uniformly constrained systems in
two and three spatial dimensions and the influence of weak ramps there-
upon. Because the Turing and Hopf instabilities rely on the same kinetic
mechanisms (competition between positive and negative feedbacks),
Turing-Hopf interactions may also be studied">' but will only be
alluded to here.

In this paper, we will mainly draw the attention to the effects of the
actual feeding of the reactor that generates concentration gradients and
determines the boundary conditions in the problem. We will separately
discuss this for the main two classes of reactors used until this day.
These essentially differ by their feeding geometries: two-side-fed reactors
with complementary subsets of chemicals or one-side-fed reactors with the
full set of chemicals. We report on results obtained using the CIMA (chlorite,
iodide, malonic acid) reaction and two other related reactions, the CDIMA
(chlorine dioxide, iodine, malonic acid) and the CDI (chlorine dioxide,
iodide reactions. The kinetic mechanisms of these reactions have been
extensively analyzed by the group in Brandeis.!'®

In all these reactions, iodide and chlorite play a major role in respec-
tively controlling the activatory and inhibitory kinetic processes at the
origin of oscillations. Generally, patterns are made visible by introducing
an “iodine color indicator” such as starch (amylose) or polyvinylalcohol.
It is noteworthy that these color indicators also play an essential role in
pattern formation since they enable the selective slowing down of the effec-
tive diffusivity of iodide, a species controlling the activatory kinetic path.
This is a necessary condition for Turing and other spatial instabilities to
develop. The slowing down is due to the formation of a reversible complex
between the macromolecular color indicator, immobilized in the gel, and
the iodine-iodide complex.!” 1®)



Reaction-Diffusion Patterns in Confined Chemical Systems 497

2. TWO-SIDE-FED REACTORS AND PARAMETER GRADIENTS

Based on an idea initially proposed by one of us,"'” Turing patterns
were first obtained in open spatial reactors fed by diffusion from two
opposing sides, with two different subsets of chemicals (Fig. 1a). This feed
mode naturally induces cross ramps of chemical concentrations between
the two feed surfaces and, as experimentally observed, pattern development
is confined in a stratum of width A parallel to the feed boundaries where
appropriate chemical parameter values are met. This is straightforward

Reservoir 1 Gel Reservoir 2

Fig. 1. Sketches of open spatial reactors. (a) Basic principles: The reactor proper consists of a
block of hydrogel (L x h x w) in contact with the contents of two separated reservoirs (1 and 2).
Reservoirs are vigorously stirred and continuously fed with fresh solutions of reagents. L and
h are the geometric dimensions of the feed surfaces of the gel reactor and w is the width of
the gel, the distance between the reservoirs. 4 is the width overwhich the chemical pattern, of
characteristic wavelength A, develops. (b) Thin strip reactor, 1 ~ 1 << L. Typical dimensions:
L=20mm; h=0.2mm; w=3mm. (c) Disc reactor, L=h>>w>> 1. Typical dimensions:
diameter =21 mm; w =3 mm.
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Fig. 2. Stationary concentration patterns in the thin strip gel reactor. Color contrast enhanced
images corresponding to a central part of the reactor; view size 2.1 mm x 2.1 mm. Color code:
dark, reduced iodine state; clear, oxidized iodine state. (a) Single row of clear spots parallel
to the feed boundaries. (b) Multiple staggered rows of spots parallel to the feed boundaries.

when using the “gel strip reactor” (Fig. 1b), the reactor geometry that
enabled the first experimental observation of Turing patterns.* When the
CIMA reaction is operated in this reactor geometry, patterns commonly
appear as one to four rows of clear spots set parallel to the feed boundaries
and at a distance from these boundaries (Fig. 2). Besides the groundbreak-
ing analytical results he obtained for the bifurcation to Turing patterns,
G. Nicolis was also the first to consider the existence of ramps of param-
eters'>2% along one direction and their effects on the appearence of the
structures. Analytical and numerical evaluations of the characteristics of
the structure have been proposed®"?? but these works doa not take into
consideration the cross coupling of spatial modes across the strip.®* 2%

When a disc shaped reactor (Fig. 1c) is used, observations are made
across the feed surfaces and, in this case, patterns are seen to spread over
the whole view plane.'>2>2% If the pattern stratum between the two feed
surfaces is sufficiently confined (4 < 1), it is said that pattern develops in a
monolayer.*” The theoretically predicted®® ?*) standard two-dimensional
hexagonal (Fig. 3a) and parallel stripe (Fig. 3b) planforms are observed.
Different patterns correspond to different feed compositions.
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.

Fig. 3. Stationary planforms observed in the two-side-fed disc reactor operated with the
CIMA reaction. Standard patterns: (a) hexagonal array of “clear” spots (b) array of parallel
stripes (bands). Nonstandard patterns: (c) array of symmetric triangles (d) array of “dark”
hexabands. All patterns are at the same scale: view size 1.7 mm x 1.7 mm.

If the pattern stratum is less confined (4 > 1), nonstandard two-dimen-
sional patterns—triangles (Fig. 3c) or mixed planform patterns (Fig. 3d)—
are viewed in the disc reactor.?®3%3" The actual status of such unusual
reaction—diffusion pattern planforms is still a matter of debate. Even if it is
clear that the third dimension can play an essential role in the development
of these patterns, it is unclear if they are the result of mere moiré effects due
to the superposition of layers of standard hexagon and stripe planforms® 39
or if these unusual planform symmetries correspond to genuine new solu-
tions of quasi-2D systems. A particular example is that of the so-called
“black eye” hexagonal patterns that could be explained either from the
activation of the overtones of the hexagonal modes*? or as the projection
of a bee pattern, predicted by the standard 3D theory, correctly oriented by
anisotropic effect of the feeding ramps.**

The three-dimensional characteristics of patterns are difficult to solve
experimentally. Different indirect approaches have been attempted: In one
of these, Ouyang et al.'" show that in a two-side-fed reactor, the strong
gradients of parameters seem to favour the stacking of two-dimensional
patterns rather than the genuine three-dimensional structures predicted by
the theory and which may be rather intricate as was discussed recently.

In another approach, experimenting in bevelled disc reactors (feed
faces making an angle) confirms the above result and can even show a
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Fig. 4. Sequence of patterns in the bevelled disc. From left to right: uniform state, hexagonal
array of spots, stripes, new hexagonal array of spots, superposition of dark spots and stripes,
travelling waves. The circular faces of the bevelled disc (diameter 21 mm) make an angle
of 4°; thickness of the disc: from 1.7 mm on the left to 3.2 mm on the right.

bifurcation from standing Turing patterns to wave patterns as a function of
the disc thickness, as illustrated in Fig. 4.

Interestingly, the distance between the feed surfaces not only acts on
the thickness of the pattern stratum so that one or more layers of patterns
can develop but also, it can act as a genuine bifurcation parameter3® 3!-34
as illustrated in Fig. 4. There, the thickness (w) of the disc increases con-
tinuously from left to right and one witnesses a sequence of patterns as the
bifurcation diagram is unfolded in space. First, one can see a transition
from the uniform state to an hexagonal array of clear spots then another
to stripes. This corresponds to the standard pattern sequence predicted by
theory for two-dimensional systems. Beyond the domain of stripes, a new
domain of clear hexagons is followed by a domain of disordered dark
hexagons before a region of wave patterns is reached on the right. These
dark, reentrant hexagons are also well accounted by theoretical approaches
for given parametric conditions. On the other hand, the waves appear
because of the underlying Hopf bifurcation that has been shifted by the
complexation effects and that leads to oscillatory behavior.

In two-side-fed reactors, the dimensionality of patterns cannot be
directly controlled; it is a response of the system to chemical concentrations
imposed at the feed surfaces. This can make observations difficult to inter-
pret, as mentioned above. Furthermore, the large changes in chemical
concentrations and in stoichiometric ratio of species between the two feed
surfaces make quantitative modelling difficult since most of the tractable
kinetical models are usually valid in restrained ranges of concentrations.
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This introduces difficulties both for modeling and in experimental control
of pattern dimensionality.

3. ONE-SIDE-FED REACTORS

To try to avoid some of the above difficulties, experiments are now
more currently performed in thin one-side-fed reactors. In such reactors, all
chemicals are introduced in a single reservoir (say reservoir 1 in Fig. la,
while reservoir 2 is replaced by an impermeable wall). If the disc of gel is
thin enough (typically (w) is made less than the pattern wavelength 1), one
might expect that no significant concentration gradient develops in the
thickness of the gel. Consequently, these reactors can be thought as good
approximations of extended two-dimensional systems irrespective of chemi-
cal feed concentrations.

The dynamics of such a device is then described by the following set
of equations which respectively describe reservoir 1 and the gel. In the first
equation, one recognizes the local reaction kinetics term, the input-output
term and the interaction term with the gel part of the device that involves
the flux of matter through the boundary separating the two media. The
second equation describes the reaction—diffusion processes that take place
in the gel.

dc; _ ci—Cio  pyD; (acz>

ot =Jle)+ T + w or/,_o (1)
dc;

i~ fle)+ DV, )

where ¢ = (..., ¢;,...) is the vector of the concentrations ¢;, ¢;, is the concen-
tration of species i in the input flow, D, its diffusion coefficient, 7 is the
residence time, p, is the ratio of the volume of the gel to the volume of the
CSTR, and w is the gel thickness.

On contact with reservoir 1, one imposes fixed concentration bound-
ary conditions (equal to concentrations in reservoir 1), whereas no-flux
conditions are taken along the other impermeable boundaries of the gel.
If the ratio of the volume of the gel is small with respect to that of reservoir 1,
the latter, since all chemicals are already present, then acts as a true con-
tinuous stirred thank reservoir (CSTR). A priori, this CSTR can exhibit
any behavior of homogeneous nonlinear dynamical systems such as multi-
stability, oscillations or even chaotic behavior. Until now, we have avoided
the regions of parameters where the CSTR becomes self-oscillatory (or
chaotic for that matter). In such regions, we would be dealing with the



502 De Kepper et al.

more intricate situation of periodically forced spatio-temporal systems.
Such type of reactor is also interesting as it allows direct correlations to be
made between the dynamics in the CSTR and that in the gel.

Let us recall the characteristics of the CSTR. If the input flow is
large—that is if the residence time is much shorter than the typical reaction
time—the extent of the reaction is small and, in the stationary regime, the
concentrations are close to the compositions in the flows (flow state F).
If the residence time is much longer than the reaction time, the extent of
the reaction is large and the composition in the reactor is near that of
the thermodynamic equilibrium that one would obtain in a closed reactor
with the same initial composition (thermodynamic state T). In standard
reactions, the branches of states F and T are smoothly connected at inter-
mediate flow rates, but when autocatalytic or similar nonlinear kinetic pro-
cesses (as in the reactions we are studying) are present, the two states can
exist for a same set of flow rates: their stability domains overlap (hence the
bistability) over a range of control parameters, clearly defining two distinct
branches F and T and the transition from one state to the other occurs
with hysteresis. The transition from the monostable to the bistable situa-
tion often proceeds through conditions reminding a critical point where the
transition from F to T, although smooth, is very sharp. Because of such
properties, in one-side-fed reactors, it is convenient to distinguish systems
for which the solution in the CSTR is in a monostable stationary state from
those where it exhibits a bistability between two stationary states.

3.1. Monostable CSTR

When the feed solution in the CSTR exhibits a stationary monostable
state, as it is the case with the CDIMA reaction, the classical two-dimen-
sional hexagon and stripe patterns are observed®® as we had already
obtained in the two-side-fed reactor when a monolayer formed. Here
however, the dimensionality is much better controlled. Accurate modeling,
using the five variable kinetic model of the reaction proposed by Lengyel,
Rabai, and Epstein,® for this system becomes possible. As illustrated in
ref. 35, striking agreement between computational and experimental results
may be obtained. In the phase diagram of Fig. 5, one can distinguish
from left to right three types of regions: (i) a region of uniform stationary
state, (ii) a region of stationary Turing patterns, (iii) a region of oscilla-
tions in the CSTR for which the corresponding dynamics in the gel is not
considered.

In chemical systems, the penetration depth of the influence of bound-
ary conditions and the pattern wavelength rely on the same competition
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Fig. 5. Plane section ([ MA],,[ClO,],) of the pattern phase diagram. Experimental obser-
vations: white square, stationary uniform states; black triangle, Turing patterns; white circle,
oscillatory states; thin full line, limit of Turing (Tgxp) and oscillatory (Ogxp) domains
(estimated from these data). Numerical simulations: thick short dashed lines, Turing bifurca-
tion (T,); thick long dashed lines, limit of bistability between uniform and patterned states
(T,); thick full line, limit of oscillatory domain (Oy).

between reaction and diffusion and thus, should develop over comparable
lengths. The homogeneity onto the feed face should then force uniformity
across these thin gels, in planes parallel to this face. Surprisingly, patterns
develop. This development relies, here, on the presence of a thin membrane
that was, for technical reasons, inserted between the CSTR and the gel.
It was shown theoretically and confirmed experimentally®> that this addi-
tional interface introduces mixed boundary conditions which have different
consequences for two types of species. Whereas this effect on the concentra-
tion of the input species (which are in large excess) remains small, these
conditions are close to no-flux conditions for the intermediate species
directly involved in the formation of Turing structures. Thus, the patterns
are let free to develop in the direction parallel to the faces.

Such reactors naturally allows to follow the pattern growth dynamics.
For some conditions, in the monostable region of the CSTR but close to
the critical point for bistability, there exists a large difference in the levels
of concentrations corresponding respectively to the F and T branches of
the CSTR. The Turing patterns tend to form in the gel for parameters of
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Fig. 6. Flower-like pattern. Pictures taken (a) 12 min; (b) 20 min; (¢) 35 min; (d) 52 min
after the initial growth of the pattern.

the CSTR corresponding to the vicinity of this critical point.*® Further-
more, patterns develop behind a front that propagates into the previously
existing uniform state that has now become unstable. What is remarkable
is that this front exhibits morphological instabilities giving rise to growth
modes involving spot division or finger splitting.*® Figure 6 illustrates the
finger tip splitting growth mechanism for Turing pattern which ultimately
leads to stripes.

3.2. Bistable CSTR

When the CSTR evolves in its bistable region, as it can be the case for
the CDI®?) (or also FIS©®®) reaction, a first important aspect is the deter-
mination of the possible corresponding states in the gel. Let one consider
the situation along the direction orthogonal to the CSTR-gel reactor boundary,
i.e., along the depth of the gel. If the CSTR is in the F branch, at each
point along the gel, fresh reactants are brought by diffusion from the
feeding edge, where the concentration is kept fixed. Close to this edge, the
extent of the reaction is small and the chemical composition remains close
to that of the flow branch. As we move away from this edge, the extent of
the reaction becomes larger because the amount of fresh reactants that
reaches the corresponding space point is limited by its transport through
molecular diffusion. So, if the gel film is thick enough, the regions of the gel
far from the feeding edge may eventually belong to a state laying on the T
branch. In such a case, the composition changes from branch F to branch
T somewhere inside the gel. Thus, for the same F state in the CSTR, one
may observe two quite different composition profiles as a function of w, the
thickness of the gel. If w is very small, the chemical composition in the gel
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stays near or in the direct continuity of the F state of the CSTR. By exten-
sion, we also call F this state in the gel. If w is large enough, the part of
the gel close to the CSTR remains on branch F while the opposing part has
the T composition. We call FT this mixed state of the gel. It can be shown
theoretically and experimentally that the stability of the F and FT states of
the gel can overlap for some finite range of w.*”*) Thus, two concentra-
tion profiles that fit the same homogeneous conditions at the CSTR/gel
boundary can be observed in the gel. This is illustrated in Fig. 7, obtained
in a thin annular strip of gel fed along one edge. This multiplicity
phenomenon has been dubbed “spatial bistability.” When the experiments

Fig. 7. Spatial bistability in the one-side-fed annular reactor. (a) state F; (b) state FT;
(c) interface between the F and FT states. The arc-lines are the limits of the gel. The lower
arc delineates the CSTR interface, the upper arc delineates the impermeable wall. Distance
between the two arc-lines, w = 1 mm.
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are made in a disc reactor, the detection of the pattern is made by integra-
tion of the light over the thickness of the gel. The two states are still
revealed by different color densities. Different domains corresponding to
states F and FT can coexist in the film. At the interface between F and FT,
the connecting front exhibits a strong curvature in order to join up
orthogonally with the impermeable wall. Such a connecting front is shown
Fig. 7c in an annular strip reactor. The relative stability of the two states
(F and FT) may be apprehended by studying the dynamics of this F—-FT
interface. Patterns may form when various such interfaces are present and
are stabilized by nonvariational effects. This would provide a comprehen-
sive understanding of the pattern observed in a disc reactor when operating
the FIS reaction.®® The possibility that periodic structures develop on the
basis of a similar spatial bistability has been recently shown theoreti-
cally.*® However, it should be clear from the preceding discussion that
such patterns are not genuine 2D patterns and do not behave as predicted
by the classical two-dimensional model approximation.

4. CONCLUSION

Many successes have been gathered in the explanation of the
experimental results by dissecting the problem in various dimensions.
Nevertheless a complete and unified interpretation will have to resort to
the consideration of the full 3D aspects. Because of the high number of
variables appearing in the kinetic mechanism, theoretical analysis is dif-
ficult, even if one forgets the inhomogeneity of conditions imposed by the
reactors. This paper has also emphasized the role of the experimental
apparatus which completely defines the nature of the boundary conditions,
a point that is often ignored in the literature. It is often flimsily assumed
that the thinnest is the system, the closest it is to a genuine two-dimensional
system. This is obviously wrong since the role of the specific boundary con-
ditions increases when the gel thickness decreases. Actually, we have shown
that this thickness can even become a bifurcation parameter and control the
formation of patterns. We believe that a number of observations in these
reactors should be revisited in regard to these considerations.
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